METHOD OF PRODUCTION AND RESEARCH OF STRUCTURE OF SPINEL-PEROVSKITE COMPOSITE MATERIAL
Keywords:
chromium complex, manganite, composite, sol-gel process, crystal structures, spinel, perovskite, multiferroic oxidesAbstract
This article discusses a composite material synthesized from cobalt carbonate and lanthanum oxide, chromium oxide and manganese. The phase composition, crystal parameters of the lattices and the type of crystal system were studied by X-ray method. According to the results of the X-ray phase study, it was found that the synthesized sample is a two-phase composite of cobalt chromite and lanthanum manganite in difgerent quantities. Lanthanum manganite in the composite material is formed in rhombic symmetry with the following parameters of crystal lattices: a=5.5213, b=5.4851, c=7.770Å, Z=4, and cobalt chromite is synthesized in cubic symmetry with the following parameters of crystal lattices: a=8.3306, b=8.3306, c=8.3306Å, Z=8.
References
Kalgin A.V., Gridnev S.A.Elektricheskiye svoystva smesevogo magnitoelektricheskogo kompozita (x)Mn0,4Zn0,6Fe2O4 − (1 − x)PbZr0,53Ti0,47O3 / Mul'tiferroiki: polucheniye, svoystva, primeneniye (24-27 sentyabrya 2019 goda). – Vitebsk: UO «VGTU», 2019. – S.13.
Spaldin N.A. Multiferroics: Past, present, and future / N.A.Spaldin, S.-W. Cheong, R. Ramesh // Phys. Today. - 2010. – V. 63. – I. 10. –P. 38.
Alguero M. Nanoscale Ferroelectrics and Multiferroics: electronic textbook / M. Alguero, J.M. Gregg, L. Mitoseriu. – UK: Wiley, - 2016. – P . 851.
Dagotto E. The Physics of Manganites and Related Compounds: electronic textbook / E. Dagotto. – В.: Springer, - 2003. – P. 230.
Patrin G.S. Magnetic and resonance properties of the Y0.5Sr0.5Cr0.5Mn0.5O3 polycrystal / G.S. Patrin, M.M. Mataev, K. Zh. Seitbekova, Y.G. Shiyan, S.A. Yarikov S.M. Zharkov // Physics of the Solid State. – 2020. – V.62. – I.8. – P.1350–1354.
Patrin G.S. Magnetic Properties of the DyMn2O5–Mn3O4Nanoparticle Composite / G.S. Patrin, M.M. Mataev, M.R. Abdraimova, Zh.I. Tursinova, A.T. Kezdikbaeva, Ya.G. Shiyan, V.G. Plekhanov // Technical Physics. – 2021. –V. 66. – N. 4. –Р. 603–609.
McDaniel A.H. Sr-and Mn-doped LaAlO3d for solar thermochemical H2 and CO production / McDaniel A.H., E.C. Miller, D. Arifjn, A. Ambrosini, E.N. Coker, R. O'Hayre, W.C. Chueh, J. Tong, Energy Environ. Sci. - 2013. – V.6. – P. 2424-2428.
Bork A. Perovskite La0.6Sr0.4Cr1-xCoxO3dsolid solutions for solar-thermochemical fuel production: strategies to lower the operation temperature / A. Bork, M. Kubicek, M. Struzik, J. Rupp // J. Mater. Chem. - 2015. –V.3. – P.15546-15557.
Schefge J.R. Lanthanumestrontiumemanganese Perovskites as redox Materials for solar thermochemical Splitting of H2O and CO2/ J.R. Schefge,D. Weibel, A. Steinfeld // Energy Fuels – 2013. –V.23 –P. 4250-4257.
Jiang Q. Thermochemical CO2splitting reaction with supported LaxA1-xFeyB1-yO3(A1⁄4 Sr, Ce, B1⁄4 Co, Mn; 0 1) perovskite oxides / Q. Jiang, J. Tong, G. Zhou, Z. Jiang, Z. Li, C. Li // Sol. Energy – 2014. –V.103. – P. 425-437.
Demont A. Investigation of perovskite structures as oxygen-exchange redox materials for hydrogen production from thermochemical two-step water-splitting cycles / A. Demont, S. Abanades, E. Beche // J. Phys. Chem. C– 2014. – V.118. –P.12682-12692.
Dey S. Ln0.5 A0.5MnO3 (Ln1⁄4 Lanthanide, A1⁄4 Ca, Sr) perovskites exhibiting remarkable Performance in the thermochemical Generation of CO and H2 from CO2 and H2O / S. Dey, B. Naidu, C. Rao // Chem. Eur J. – 2015. –V.21. – P.7077-7081.
Babiniec S. M. Investigation of LaxSr1- xCoyM1yO3d (M1⁄4 Mn, Fe) perovskite materials as thermochemical energy storage media / S.M. Babiniec, E.N. Coker, J.E. Miller, A. Ambrosini // Sol. Energy – 2015. –V.118. – P .451-459.
Deml A.M. Tunable oxygen vacancy formation Energetics in the complex perovskite oxide SrxLa1-xMnyAl1-yO3 / A.M. Deml, V. Stevanovic, A.M. Holder, M. Sanders, R. O'Hayre, C.B. Musgrave // Chem. Mater. - 2014. –V.26. – P .6595-6602.
Rao C. Solar thermochemical splitting of water to generate hydrogen / C. Rao, S. Dey // Proc. Natl. Acad. Sci. – 2017. –V.114. –P .13385-13393.
Dey S.Splitting of CO2 by manganite perovskites to generate CO by solar isothermal redox cycling / S. Dey, C. Rao // ACS Energy Lett. – 2016. –V.1. –P. 237-243.
Muhich C.L. Comparing the solar-to-fuel energy conversion effjciency of ceria and perovskite based thermochemical redox cycles for splitting H2O and CO2/ C.L. Muhich, S. Blaser, M.C. Hoes, A. Steinfeld // Int. J. Hydrogen Energy - 2018. –V.43. –P.18814-18831.
Takacs M.Oxygen nonstoichiometry, defect equilibria, and thermodynamic characterization of LaMnO3 perovskites with Ca/Sr A-site and Al B-site doping/ M.Takacs, M.Hoes, M.Cadufg, T.Cooper, J.Schefge, A.Steinfeld // Acta Mater. - 2016. –V.103. –P .710.
Yang C.K. Thermodynamic and kinetic assessments of strontium-doped lanthanum manganite perovskites for two-step thermochemical water splitting / C.K.Yang, Y. Yamazaki, A. Aydin, S.M. Haile // J. Mater. Chem. – 2014. –V.2. – P. 13612-13623.
Cooper T. Lanthanum manganite perovskites with Ca/Sr A-site and Al B-site doping as efgective oxygen exchange materials for solar thermochemical fuel production / T. Cooper, J.R. Schefge, M.E. Galvez, R. Jacot, G. Patzke, A. Steinfeld // Energy Technol. - 2015. –V.3. – P. 1130-1142.
Bork A.H. Modeling thermochemical solar- to-fuel conversion: CALPHAD for thermodynamic assessment studies of perovskites, exemplifjed for (La, Sr) MnO3 / A.H. Bork, E. Povoden-Karadeniz, J.L. Rupp// Adv. Energy Mater. - 2017. –V.7. – P. 1601086.
Bork A.H.Thermodynamic assessment of the solar-to-fuel performance of La0.6Sr0.4Mn1-yCryO3-δ perovskite solid solution series / A.H. Bork, E. Povoden-Karadeniz, A.J. Carrillo, J.L.M. Rupp // Acta Materialia. – 2019. –V.178. –Р. 163-172.
Yamasaki Y. Magnetic Reversal of the Ferroelectric Polarization in a Multiferroic Spinel Oxide / Y. Yamasaki, S. Miyasaka, Y. Kaneko, J.P. He, T. Arima, Y. Tokura // Phys. Rev. Lett. (4pp) – 2006. –V.96. – P. 207204.
O’Neill H.S.C. Simple spinels; crystallographic parameters, cation radii, lattice energies, and cation distribution / H.S.C. O’Neill, A. Navrotsky // Am. Mineral. (1-2) – 1983. –V.68. – P. 181–194.
Scott J.F. Multiferroic memories/ J.F. Scott // Nat. Mater. - 2007. –V.6. – P. 256–257.
Shah Z.H. Tunable structural and electrical impedance properties of ordered and disordered iron oxide phases for capacitive applications/ Z.H. Shah, S. Riaz, S. Atiq, S. Naseem // Ceram. Int. – 2018. –V.44. -P. 16352–16364.
Kleemann W.Multiferroic and magnetoelectric nanocomposites for data processing / W. Kleemann, J. Phys. D: Appl. Phys. (12pp) – 2017. –V.50. – P. 223001.
Chu Z. Review of multi-layered magnetoelectric composite materials and devices applications / Z.Chu, M. Pourhosseini Asl, S.Dong // J.Phys. D: Appl. Phys. (21pp) – 2018. –V.51. – P. 243001.
Niu X. Preparation and gas sensing properties of ZnM2O4(M = Fe, Co, Cr) / X. Niu, W. Du, W. Du // Sens. Actuators B Chem. – 2004. –V.99. – P. 405–409.
Boumaza S. Hydrogen photo-evolution over the spinel CuCr2O4/ S. Boumaza, R. Bouarab, M. Trari, A. Bouguelia // Energy Convers. Manag. -2009. –V.50. P 62–68.
Fernandez A.L. Formation and the colour development in cobalt spinel pigments / A.L. Fernandez, L. de Pablo // Pigment Resin Technol – 2002. –V.31. - P. 350–356.
Fakher H. Thermal, microstructural, optical, magnetic and magnetocaloric studies for Ni0.5Mn0.5Cr2O4chromite spinel prepared using sol-gel method / H.Fakher, S.Hcini, M.M.Almonee, M.H.Dhaou, M.S.Alshammari, A.Mallah, S.Zemni, N. Lefj, M.L.Bouazizi // Journal of Molecular Structure. – 2021. – V.1243. – P.130769.
Bokov D. Nanomaterial by Sol-Gel Method: Synthesis and Application / D. Bokov, A.T. Jalil, S. Chupradit, W. Suksatan, M.J. Ansari, Iman H. Shewael, H.G. Valiev, E. Kianfar // Advances in Materials Science and Engineering. –2021. –V. 2021. – Р. 5102014.