SYNTHESIS, THERMAL BEHAVIOR AND IONIC CONDUCTIVITY OF SILICOPHOSPHATE CERAMICS

Authors

  • A.V. Lapin Нижегородский государственный университет им. Н.И. Лобачевского, химический факультет, кафедра химии твердого тела, Нижний Новгород, Россия
  • V.I. Pet'kov Lobachevsky University, Nizhni Novgorod, Russia
  • E.A. Asabina Lobachevsky University, Nizhni Novgorod, Russia
  • S.V. Telegin Lobachevsky University, Nizhni Novgorod, Russia
  • N.S. Kulikova Lobachevsky University, Nizhni Novgorod, Russia

Keywords:

phosphate ceramic, NASICON, hot pressing, thermal expansion, solid electrolyte.

Abstract

Silicophosphate ceramics of the composition A2Zr2SiP2O12 (A – Li, Na, K, Rb,Cs) were synthesized and investigated. The powder samples were obtained by sol-gel methodwith subsequent thermal treatment of the reaction mixtures. The hot pressing method was used to fabricate the monolithic ceramics. The samples were characterized by XRD (including thermal studies), IR-spectroscopy, scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis. The sintering process of the ceramic Na2Zr2SiP2O12, its thermal expansion and ionic conductivity were studied.

Author Biographies

A.V. Lapin, Нижегородский государственный университет им. Н.И. Лобачевского, химический факультет, кафедра химии твердого тела, Нижний Новгород, Россия

студент

V.I. Pet'kov, Lobachevsky University, Nizhni Novgorod, Russia

кандидат химических наук, доцент

E.A. Asabina, Lobachevsky University, Nizhni Novgorod, Russia

кандидат химических наук, доцент

S.V. Telegin, Lobachevsky University, Nizhni Novgorod, Russia

кандидат химических наук, доцент

N.S. Kulikova, Lobachevsky University, Nizhni Novgorod, Russia

студент

References

Rao Y.B, Bharathi K.К., Patro L.N. Solid State Ionics. 2021. V. 366-367. P. 115671.

Ruan Y., Guo F., Liu J., Song Sh., Jiang N., Cheng B.Ceram. Int. 2018. V. 46. № 2. P. 1770−1776.

Paściak G., Mielcarek W., Prociów K., Warycha J.Ceram. Int. 2014. V. 40. № 8. P. 12783–12787.

Goodenough J.B., Hong H.Y-P., Kafalas J.A. Mater. Res. Bull. 1976. V. 11. № 2. P. 203−220.

Hagman L.O., Kierkegaard P. Acta Chem. Scand. 1968. V. 22. № 6. P. 1822−1832.

Brownfield M.E, Foord E.E., Sutley S.J., Botinelly T. Am. Mineral. 1993. V 78. № 5−6. P. 653−656.

Kim N., Stebbins J.F. Chem. Mater. 2009 V. 21. № 2. P. 309-315.

Kamali K., Ravindran T.R. J. Phys. Chem. A.2016. V. 120. № 12. P. 1971–1977.

Gajda R., Zhang D., Parafiniuk J., Dera P., Wozniak K.IUCrJ. 2022. № 9. P. 146-162.

Kesavan K., Thoguluva R., Chinnappan R. Spectrochim. Acta - A: Mol. Biomol. Spectrosc. 2016. V. 155. P. 38-46.

Miyazaki H., Ushiroda I., Itomura D., Hirashita T., Adachi N., Ota T. Jpn, J. Appl. Phys. 2008. V. 47. № 9. P. 7262-7265.

Catti M., Mortante N., Ibberson R.M. J.Solid State Chem. 2000. V. 152. № 2. P. 340-347.

Feltz A., Barth S.Solid State Ionics. 1983. V. 9-10. P. 817–821.

Orlova A., Orlova V.A., Beskrovnyi A., Trubach I., Kurazhkovskaya V. Crystal. Rep. 2005. V. 50. № 5. P. 759-765.

Куражковская В. С., Боровикова Е. Ю. Инфракрасная и мессбауэровская спек-троскопия кристаллов. М. Изд-во МГУ, 2008. – 98 с.

Asabina E., Pet’kov V., Mayorov P., Lavrenov D., Schelokov I., Kovalsky A. Pure Appl. Chem. 2017. V. 89. № 4. P. 523-533.

Ногай А. С., Ногай А. А., Стефанович С. Ю., Солиходжа Ж. М., Ускенбаев Д. Е. Физика твердого тела. 2020. Т. 62. вып. 8. С. 1216–1225.

Published

2023-12-19