INFORMATION AND ANALYTICAL SYSTEMS FOR PROCESSING BIG DATA (BIG DATA)

Authors

  • Rakhat Sulaimanovna Atyrova Osh state university
  • Aigerim Esenalievna Jumanova Osh State University

Keywords:

Data analysis, big data (Big data), information and analytical technologies, forecasting, management decision making.

Abstract

This article is for those who are interested in big data and will be primarily useful for those who collect, analyze and use it. Big data will only grow with the use of computers in work activities, and there will be a need for efficient processing, storage and analysis of this data. There is a need to use these data in forecasting and planning with the development of information technology. Since data analytics can give a more accurate analysis, and, accordingly, a more accurate result of the analysis can help make the right decision. The significance of big data begins to appear only at the stage of their analysis; the correct use of useful analytical data increases the efficiency of the organization’s management. And a better solution, in turn, can mean increased operational efficiency, reduced costs, and reduced risk of poor management decisions. Leading organizations are using data analytics to understand company risks and opportunities through big data that can be used in forecasting.

References

Complete Guide to Predictive Analytics and Big Data Analytics. Nazar Kvartalnyi [Электронный ресурс]. – Режим доступа: https://inoxoft.com/blog/complete-guide-to-predictive-

analytics-and-big-data-analytics/ Опубликовано: 25.08.2021. (дата обращения: 20.04.2022).

Майер-Шенбергер В., Кукьер К. Большие данные: Революция, которая изменит то, как мы живем, работаем и мыслим. – Манн, Иванов и Фербер, 2014 -240c.

Что такое аналитика больших данных? [Электронный ресурс]. – Режим доступа: https://azure.microsoft.com/ru-ru/overview/what-is-big-data-analytics/#importance-of-data-analytics (дата обращения: 30.01.2022).

Бабанов, А. Б. Перспективы внедрения больших данных в бизнесе / А. Б. Бабанов,

В. В. Кадацкая. — Текст : непосредственный // Молодой ученый. — 2021. — № 28 (370).

— С. 174-176. — URL: https://moluch.ru/archive/370/83188/ (дата обращения: 20.05.2022).

Predictive big data analytics for supply chain demand forecasting: methods, applications,

and research opportunities. [Электронный ресурс]. – Режим доступа: https://journalofbigdata.

springeropen.com/articles/10.1186/s40537-020-00329-2 (дата обращения:05.05.2022).

Wang G, Gunasekaran A, Ngai EWT, Papadopoulos T. Big data analytics in logistics and

supply chain management: certain investigations for research and applications. Int J ProdEcon.

;176:98–110. https://doi.org/10.1016/J.IJPE.2016.03.014.

Herodotou H. et al. Starfish: A Self-tuning System for Big Data Analytics //CIDR. – 2011.

– Т. 11. – р.261-272.

Осторожно, данные собираются: как технологии bigdata меняют мир [Электронный

ресурс]. – Режим доступа: https://finparty.ru/opinions/166219/. (дата обращения: 21.12.2021).

Кушнир, Е. А. Противостояние XXI века / Е. А. Кушнир, Л. А. Телегина. в 2-х томах.

Т. 1. – Саров: ФГУП «РФЯЦ-ВНИИЭФ», 2019. – 354 с

Published

2022-08-21