СПОСОБЫ ПОЛУЧЕНИЯ И ХАРАКТЕРИСТИКА НАНЕСЕННЫХ КАТАЛИЗАТОРОВ
Ключевые слова:
катализаторы, углеродные носители, синтез, каталитическая активность.Аннотация
Общеизвестно, что в процессах разработки новых материалов используют катализаторы, которые позволяют осуществить целевую трансформациюисходного
сырья. В промышленности широко применяются катализаторы на основе редких, переходных и благородных металлов. Для более эффективного использования металлов их наносят на различные носители, которые обладают развитой удельной площадью поверхности,
механической прочностью, устойчивостью к действию агрессивных сред, стабильностью и
инертностью. На основе приведенных литературных данных показано, что катализаторы,
полученные физическими методами, обладают более высокой конверсией и каталитической
активностью по сравнению с катализаторами, полученными классическими методами, такими как методы пропитки или восстановления.
Данная статья посвящена обзору литературных источников по способам получения
катализаторов на углеродных носителях.Анализ литературных источников предназначен
для выбора способов целенаправленной модификации углей Кыргызстана с целью получения высокоэффективных носителей и синтеза нанесенных катализаторов.
Библиографические ссылки
Пшеницын H.К., Гинзбург С.И. Изучение гидролиза комплексных хлоридовоплатиновых металлов и рН начала выделения их гидроокисей // Изв. сектора платины АН СССР. 1949. Вып.2. С. 100–114.
Takashi Harada, Shigeru Ikeda, Mayu Miyazaki, Takao Sakata, Hirotaro Mori, Michio
Matsumura. A simple method for preparing highly active palladium catalysts loaded on various
carbon supports for liquid-phase oxidation and hydrogenation reactions // J. Mol. Catal. A: Chemical. 2007. V. 268. P. 59–64.
Jin H., Park S.E., Lee J.M., Ryu S.K. The shape-selectivity of activated carbon fibers as a
palladium catalyst support // Carbon. 1996. V. 34. № 3. P. 429–432.
Farkas G., Hegedus L., Tungler A., Mathe T., Figueiredo J.L., Freitas M. Effect of carbon support properties on enantioselective hydrogenation of isophorone over palladium catalysts
modified with (−)- dihydroapovincaminic acid ethyl ester // J. Mol. Catal. A: Chemical. 2000. V. 153. P. 215–219.
Lingling Z., Tianhong L., Jianchun B., Yawen T., Cun L. Preparation method of an ultrafine carbon supported Pd catalyst as an anodic catalyst in a direct formic acid fuel cell // Electrochem. Commun. 2006. V. 8. P. 1625–1627.
Song J. R. et al. Preparation and characterization of novel Pd/SiO2 and Ca–Pd/SiO2
eggshell catalysts with porous hollow silica //Applied Surface Science. 2006.V. 253. №. 5.P. 2678- 2684.
Gurrath M. et al. Palladium catalysts on activated carbon supports: Influence of reduction
temperature, origin of the support and pretreatments of the carbon surface //Carbon. 2000. V. 38.
№. 8.P. 1241-1255.
Hu Q. et al. Direct synthesis of palladium-containing mesoporous carbon //Microporous
and mesoporous materials. 2005. V. 81. №. 1. P. 149-154.
Suresh G. et al. Tailoring the synthesis of supported Pd catalysts towards desired structure
and size of metal particles //Physical Chemistry Chemical Physics. 2010. V. 12. №. 18. P. 4833- 4842.
Markus H., Plomp A.J., Maki-Arvela P., Bitter J.H., MurzinD.Yu. The influence of acidity of carbon nanofibre-supported palladium catalysts in the hydrogenolysis of hydroxymatairesinol // Catalysis Lett. 2007. V. 113. №. 3-4. P. 141–146.
Jun-Sheng Z., Xin-Sheng Z., Ping L., Jun Z., Xing-Gui Z., Wei-Kang Y. Effect of carbon
nanofiber microstructure on oxygen reduction activity of supported palladium // ElectrocatalystElectrochem. Commun. 2007. V. 9. № 5. P. 895–900.
Gurrath M., Kuretzky T., Boehm H.P., Okhlopkova L.B., Lisitsyn A.S., Likholobov V.A.
Palladium catalysts on activated carbon supports influence of reduction temperature, origin of the
support and pretreatments of the carbon surface // Carbon. 2000. V. 38. № 8. P. 1241–1255.
Tribolet P., Kiwi-Minsker L. Palladium on carbon nanofibers grown on metallic filters as
novel structured catalyst // Catalysis Today. 2005. V. 105. № 3-4. P. 337–343.
Inaga K.M., Toyoda M., Soneda Y., Morishita T. Nitrogen-doped carbon materials//Carbon. 2018. V. 132. P. 104-140.
Huanqiao L., Gongquan S., Qian J., Mingyuan Z., Shiguo S., Qin X. Synthesis of highly
dispersed Pd/C electro-catalyst with high activity for formic acid oxidation // Electrochem. Commun. 2007. V. 9. P. 1410–1415.
Bradley J.S., Millar J.M., Hill E.W., Behal S. Surface chemistry on transition metal
colloids. An infrared and NMR study of carbon monoxide adsorption on colloidal platinum // J. Catalysis. 1991. V. 129. № 2. P. 530–539.
Troitski S.Y., Serebriakova M.A., Fedotov M.A., Ignashin S.V., Chuvilin A.L., Moroz
E.M., Novgorodov B.N., Kochubey D.I., Likholobov V.A., Blanc B., Gallezot P. Synthesis and study
of palladium colloids and related catalysts // J. Mol. Catal. A: Chemical. 2000. V. 158. № 1. P. 461–465.
Srinivasan R. et al. Micromachined reactors for catalytic partial oxidation reactions //
AIChE Journal. 1997. V. 43. №. 11.P. 3059-3069.
Mougenot M. et al. PdAu/C catalysts prepared by plasma sputtering for the electro-oxidation of glycerol //Applied Catalysis B: Environmental. 2011.V. 107. №. 3.P. 372-379.
Mu X. et al. The preparation of Pd/SiO< sub> 2 catalysts by chemical vapor
deposition in a fluidized-bed reactor //Applied Catalysis A: General. 2003.V. 248. №. 1.P. 85-95.
Said-Galiev E. E. et al. Structure of mono-and bimetallic heterogeneous catalysts based
on noble metals obtained by means of fluid technology and metal-vapor synthesis //Russian Journal of Physical Chemistry A. 2012.V. 86. №. 10. P. 1602-1608.
Аксенов И. А. Наноструктурированные катализаторы селективного гидрирования
ацетиленовых и диеновых углеводородов// диссертация… кандидата химических наук. Москва, 2014. 160 с.
Нескоромная Е.А., Бабкин А.В., Бураков А.Е., Романцова И.В., Кучерова А.Е. Создание гибридных углеродных наносорбентов комплексной очистки водных сред// Вестник ТГТУ. Т. 21. С. 339.
Патент РФ № 2220770. МПКВ01J 37/34. 2004.
Favia P., de Vietro N., Di Mundo R., Fracassi F., Agostino R. Tuning the asid base surface character of carbonaceous materials by means of cold plasma treatments// Plasma processes and polymers. 2006. №3. Р. 66-74.
Marine W. et al. Strategy of nanocluster and nanostructure synthesis by conventional
pulsed laser ablation //Applied surface science. 2000.V. 154.P. 345-352.
Senkan S. et al. High-throughput metal nanoparticle catalysis by pulsed laser ablation //
Catalysis today. 2006.V. 117. №. 1.P. 291-296.
Jiang L. et al. Selective hydrogenation of o-chloronitrobenzene (o-CNB) over supported
Pt and Pd catalysts obtained by laser vaporization deposition of bulk metals //Journal of Molecular
Catalysis A: Chemical. 2009.V. 310. №. 1.P. 144-149.
ChaiG.S., B. Fang, J.-S.Yu.γ-Rayirradiation ashighlyefficientapproachforsynthesisofsupportedhigh Ptloadingcathodecatalyst for application in direct methanol fuel cell// Electrochemistry Communications. 2008.V. 10.Р. 1801–1804.
Lee K.-P., LeeSe-H.,SundaramK.Sh. et al. Preparation of Co/Pd alloy particles dispersed
multiwalled carbon nanotube supportednanocatalysts via gamma irradiation// Radiation Physics
and Chemistry. 2012. V. 81.Р.1422–1425.