УДК.621.01

Зулпиев Султанали Момунович,

к.т.н., доцент

Кызылкийский институт технологии, экономики и права Баткенского государственного университета

Зулпиев Султанали Момунович,

т.и.к., доцент

Кызыл-Кыя технология, экономика, жана укук институту, Баткен Мамлекеттик Университети

Zulpiev Sultanali Momunovich,

candidate of technical sciences, associate professor Kyzyl-Kiya inshtitute texhnolody, ekonmyand low Batken State Universitet

Давидбаев Бахтиёрджон Незамидинович,

к.т.н., профессор,

Ферганский Политехнический Институт

Давидбаев Бахтиёрджон Незамидинович,

т.и.к., профессор,

Фергана Политехникалык Институту

Davidbaev Bakhtiyorzhon Nezamidinovich,

candidate of technical sciences, professor, Fergana Polytechnic Institute

Давидбаева Наргиза Бахтиёрджановна,

 $\kappa.m.H$

Ферганский Политехнический Институт

Давидбаева Наргиза Бахтиёрджановна,

т.и.к.,

Фергана Политехникалык Институту

Davidbaeva Nargiza Bakhtiyorzhanovna,

candidate of technical sciences, fergana Polytechnic Institute

ОДВИЖЕНИЕ ЛЕТУЧКИ ХЛОПКА-СЫРЦА ПО ПОВЕРХНОСТИ ПЕРФОРИРОВАННОЙ СЕТКИ СЕПАРАТОРА СС-15A

Аннотация. В статье рассматривается движения летучка хлопка – сырца сетчотой поверехности хлопкого сеператора. Приводится резултаты экспериментов соетавного скаребка с лопастями.

Ключевые слова: Хлопок сырец, скребок, перфорированная сетка, летучек, составной, вакуум- клапан, скребковый вал, рабочая камера, воздух, сила момент, резина, втулка трения

СС-15А СЕПАРАТОРУНУН ТЕШИКТҮҮ ТОРУНУН ҮСТҮНӨН ЧИЙКИ ПАХТАНЫН КАЛКЫП УЧКАН КЫЙМЫЛЫ ЖӨНҮНДӨ

Аннотация. Макалада пахта сепараторунун торлуу бетинин үстүндөгү чийки пахтанын калкып учкан кыймылы каралат. Калканы бар композиттик кыргычка жасалган эксперименттердин натыйжалары келтирилген.

Негизги сөздөр: Чийки пахта, кыргыч, тешилген тор, учуучу, курама, вакуум-клапан, кыргыч вал, жумушчу камера, аба, резина, сүрүлүү втулкасы

ABOUT THE MOVEMENT OF THE RAW COTTON FLY OVER THE SURFACE OF THE PERFORATED MESH OF THE SS-15A SEPARATOR

Abstract. The article studies the movement of raw cotton particles on the mesh surface of the cotton separator. The test results of the slider with the recommended content are given.

Keywords:: Cotton raw material - scraper, mesh surface, piece, vacuum - valve, scraper shaft, working chamber, air, force, torque, rubber, bushing, friction.

Существующие конструкции хлопкового сепаратора CC-15A служат для сепарация хлопка-сырца от воздуха, которые содержат из перфорированной сеткой, вакуум – клапан и скребкового вала [1].

Недостатком данной конструкции является недостаточность отделения хлопка-сырца от воздуха, а также высокий износ и снижение ресурса работы камеры за счет ударного взаимодействия хлопка-сырца особенно крупных сорных примесей (камень и др. тяжелые примеси) о стенки камеры. При этом стенка нагревается, происходит её деформация, а также могут возникнуть трещины, что приводит к резкому снижению давления в камере

В сепараторе для волокнистого материала, содержащий разделительную камеру, входной и выходной патрубки, приводной сетчатый барабан, расширяющийся в горизонтальной плоскости от входного патрубка к сетчатому барабану, причем внутри камеры напротив входного патрубка размещена отражательная перегородка, разделяющая камеру на два канала, расположенные в верхней части камеры пневмопровод, в нижней части камеры волокнопровод смонтированный и в нижней части камеры вакуум-клапан [1]. Недостатком известного устройства является недостаточная эффективность се-

парации и возможные забои камеры. Кроме того в процессе работы в некоторой степени изменяется объем смеси воздуха с хлопком вовходном патрубке. Но, при этом сечения пневмопровода и волокнопровода (хлопкопровода) остаются не измененными, что отрицательно влияет на разделение хлопка от воздуха.

В другой конструкции сепаратора для волокнистого материала содержащий разделительную камеру, входной и выходной патрубки, сетчатый барабан, установленный перед выходным патрубком, и вакуум-клапан, смонтированный в нижней части разделительной камеры. Камера выполнена расширяющейся в горизонтальной плоскости от входного патрубка до сетчатого барабана. Внутри камеры установлена отражательная перегородка, разделяющая камеру на пневмопровод, расположенный в верхней части камеры, и волокнопровод - ее средней части. В волокнопроводе по направлению к вакуум-клапану установлены верхом направляющие ребра. При этом направляющие ребра установлены на верхней стенке волокнопровода, или на нижней стенке, или на верхней и нижней стенках. Высота направляющих ребер составляет от 1/4 до 1/3 высоты поперечного сечения волокнопровода [2].

Для изучения выше указанных недостатков нами были визуальными наблюдениями через смонтированную окна дверца сепаратора установлено, что дольки и летучки, отпавшие от основного потока хлопка-сырца и не попавшие в вакуум- клапан, продолжают двигаться по кольцу в рабочей камере, образуя вихревой поток.

Таким образом, дольки и летучки хлопка в рабочей камере сепаратора до вакуум-клапана совершают сложные движения, при этом они перемешиваются между собой, образуя переплетения волокон. Часть из них под действием воздушного потока направляется к боковым поверхностям перфорированной сетки и прилипает к ним.

Там, где воздушный поток прижимает дольки и летучки хлопка к сетчатой поверхности с некоторой силой F, со стороны скребка в момент сгребания этого хлопка с сетчатой поверхности действует определенная сила P и перемещение долек и летучек хлопка по поверхности перфорированной сетки осуществляется под действием этих сил.

При этом возникают две силы трения: сила трения хлопка-сырца T_1 о сетчатую поверхность и T_2 по прорезиненной поверхности скребка. Из всех сил, действующих на

летучку хлопка, наиболее сложной с точки зрения определения ее величины, является аэродинамическая сила давления F.

Для определения величины этой силы нами условно принято, что летучки хлопка-сырца располагаются по всей площади поверхностиперфорированной сетки равномерно в один слой.

Сила действующие на летучку со стороны скребка Р (рис.1); разлагается на два составляющие: нормальную силу N проходящею через центр рассматриваемого шара 0, и касательную сила R величина которой определяется силой трения хлопка с прорезиненную поверхность скребка T_2 .

Сила трения T_1 зависит от значения силы аэродинамического давления F и равна:

$$T_1 = fF, H \tag{2}$$

где: f — коэффициент трения хлопка о сетчатую поверхность.

Составляющие силы Р соответственно равны:

$$N = P\cos\alpha, H$$
 $R = P\sin\alpha, H$ (3)

Из рис. 1видно что угол меняется от 0 до 90° .

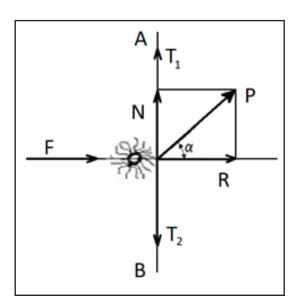


Рис.1 Схема удара летучки сперфорированной поверхности сепаратора

Зная величину силы R можно определить силу T_2 по формуле:

$$T_2 = f_2 P_2 \cos \alpha , H \tag{4}$$

Где: f_2 - коэффициент трения хлопка-сырца по прорезиненной поверхности.

Далее определяем крутящий момент, действующий на летучку, создаваемой парой сил T_1 и R_1 , который равен:

$$M_{KD} = T_1 \cdot r + (R - T_2)rH.M;$$
 (5)

Очевидно, что если сила трения T_2 окажется больше, нежели касательная сила Rто величина крутящего момента Мкр будет иметь свое минимальное значение. С увеличением же величины угла величина касательной силы R увеличивается и при α =90 $^{\circ}$ достигает своего максимального значения, следовательно, растет также значение крутящего момента.

Согласна уравнения (2) значение силы трения T_1 всегда больше нуля и величина ее находится в прямой зависимости от скорости фильтрации и площади соприкосновения хлопка оперфорированной поверхности сетки. Поэтому момент, создаваемый силой T_1 всегда больше суммы моментов от силы T_2 и R. Из этого вывода можно написать условие качения:

$$T_1 \cdot r > (R - T_2)r \tag{6}$$

Рассматривая уравнения (5) и (6) можно сделать следующие заключение, что летучки (дольки) хлопка, прилипшие к поверхности перфорированной сетки, при сгребании их скребком совершают движение качения, вращаясь вокруг своей оси. Поэтому перед скребком по всей его длина образуется валик из хлопка, вследствие чего происходит переплетение в узелки волокон долек и летучек. Помимо этого, возможно заклинивание долек хлопка между скребком и поверхности перфорированной сетки. При этом возможно зажгучивание хлопка, обра-

зование свободного волокна и повреждение семян.

С целью уменьшенияпородообразования хлопка — сырца в сепараторе СС-15А необходимо создать условие, чтобы перемещение хлопка-сырцапо поверхностиперфорированной сетки происходило скольжением с малым значением коэффициента трения f_I приведет к ликвидация необходимого эффекта качения хлопка —сырца. Для этого необходимо заменит сетчатой поверхность из материала с низким значением коэффициента трения или так сделать, чтобы скребковый вал совершить такое движение, которые легко снимались накопленные дольки хлопка-сырца, а также переплетения узелки волокон и летучек.

Как известно в конструкция СС-15А снятия прилипшие летучек хлопка-сырца из поверхности перфорированной сетки, скребки с лопастями вокруг свой оси совершает два-три оборотов. При этом резиновая лопасти скребка вдавливает летучка на поверхности перфорированной сетки и замедляет свое движении и останавливается. Это приводят поломки скребка и в рабочей камере происходят разряжения воздуха, которые приводят дополнительную нагрузку электродвигателя воздуходувной машины. Каждый год в Ташлакском хлопкоочистительном заводе за счет разряжения воздуха выходить из строяв среднем 5-6 электродвигателей, которые приводит в среднем 8÷10 млн. сум. убыток.

Для ликвидации выше указанных недостатков нами были изготовлены опытный образец скребка с лопастями (рис 3), где скребковый вал выполнен составной из вала, установленной на нем наружным втулок с скребковыми лопастями посредством упругих (резиновых) втулок, где происходят дополнительные колебание наружной втулок с лопастями. Предлагаемой (резиновой) втулка снижает нагрузки на скребковый вал и тем самым подшипниковые опоры возникает неуравновешенных инерционных сил наружной втулок с лопастями. Следует, отметит, что существующие скребки с лопа-

стями при одной обороте своей оси в сетчатой поверхности снимает летучки, дольки хлопка-сырца и др. 60% [2]. Предлагаемые скребки с лопастями снимает 80÷ 85 %.

Для изготовления упругих втулок была изготовлена специальная матрица. При

установке резиновой втулок между скребком с лопастями использовали специальный клей "Лейканат". Для экспериментов были выбраны следующие варианты марки резины: 825 MBC, 7B-14,3826 MBC,1338,1847,7 ИРП 13-48.

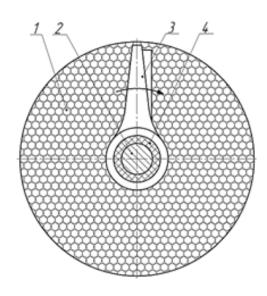


Рис.2 Схема очищения летучки хлопка-сырца с перфорированной поверхности при помощи скребка с лопастям

С учетом результатов экспериментов и испытания в Ташлакском хлопкоочистительном заводе предлагаемой втулок с лопастями при производительности сепаратора Π =15 т/ч в качестве упругих втулок наибо-

лее приемлемым является использование марки резины типа 7В-14 МВС с пределом жесткости 820-875 Н·м/рад, при которых обеспечивается $\delta_1 \leq 0.075 \div 0.15$, а ресурс работы рекомендуемой конструкции увеличился на 10-12%.

Литература

- 1. A Djuraev., B.N. Davidboev., N.B. Davidboeva. (2020). Determination of Oscillatiom Amplitude of Cotton Particle at Interaction with Plate and Shock Absorber of the Separator. //. International Journal of Abvanced Research in Science, Engineering and Technology Vol. 7 Issue 9,14977-14981
- 2. Джураев, А. Д., Давидбаев, Б. Н., Давидбаева, Н. Б. (2019). Обоснование параметров амартизирующий пластины резиновой подушке сепаратора хлопка-сырца. Наманганский инженерно-технологически институт. Научно-технический журнал, (4).
- 3. *A Djuraev,B.N. Davidboev,N.B. Davidboeva*.(2020) Substantiation Parameters Of Reflektor With Rubber Shock Absorber Of Cotton Separator//. SolidStateTechnology 63 (6). 1718-1726
- 4. Джураев, А. Д., Давидбаев, Б. Н., Алимов О, Давидбаева, Н. Б. Сепаратор для волокнистых материаллов. // Патент Узбекистан IAP 06300 блютен №10 2020
- 5. Джураев, А., Давидбаев, Б., Давидбаева, Н. Анализ процесса выпадения частиц хлопка в зоне взаимодействия с амортизирующем отражателям сепаратора. Научно-технический-журнал Ферганского политехнического института. 2020 (спец.вып.) №1 144-147 стр.
- 6. Davidboev, B., Mirzakhanov, Y., Makhmudov, I., Davidboeva, N. (2020). Research of lateral assembly of the belt in flat-belt transmissions and transport mechanisms. *International Journal of Scientificand Technology Research*, 9(1), 3666-3669.

7. Джураев, А. Д., Давидбаев, Б. Н., Зулпиев, С. М., Давидбаева, Н. Б. (2013). Структурный кинематический и динамический анализ рычажно-шарнирных муфт с упругими элементами карданного механизма. Фергана. "Фаргона".

- 8.Джураев, A., Давидбаев, E., Давидбаева, E. (2020). Влияние взаимодействие летучки с амортизирующей пластин. Сепаратора на качественные показателей хлопка-сырца. Збірникнауковихпраць $\Lambda O \Gamma O \Sigma$, 72-76
 - 9.Давидбоев, Б. Н. (1989). Кутариш-ташишмашиналари. Тошкент, "Укитувчи".
- 10.Джураев, А. Ж., Давидбаев, Б. Н., Мирзахонов, Ю. У., Давидбаева, Н. Б., Умаров, Б. Шарнирно-рычажная муфта. КР. Авторское свидетельство, (116).
- 11.Джураев, А., Зулпиев, С. (2009). Структурный анализ рычажно-шарнирной муфты. Ж. «ФерПИилмий техника журнали», Фергана, (2), 30.
- 12. Juraev, A., Davidbaev, B. N., Zhalyaev, A. A., Mirzakhanov, U. U. Slippage gear with tension roller. PatentUz. Res. UZIAP, 4228, 03-31.
- 13.Джураев, А., Давидбаев, Б., Давидбаева, Н. (2020). Исследование взаимодействия частицы хлопка—сырца с амортизирующей пластин сепаратора \land сборник на уковихпраць \land гоо, 82-86
- 14. Джураев, А., Давидбаев, Б. Н, Давидбаева, Н. Б. Разработка эффективной конструкции и резултаты испытаний сепаратора хлопка сырца \\ Материалы с межднуардной научно пракической конференции "Актуалные проблемы внедрения инновацион техники технология на предприятиях по производетву строителнных материалов, химической промышленности и в смежных отрасля" 24-25. 05. 2019 част 4 2019. 80-85 стр.
- 15. Джураев, А., Давидбаев, Б.Н, Давидбаева, Н.Б. Разработка эффективной конструкции и результаты испытаний сепаратора хлопка сырца\\ Сборник материалов Республиканской научно-практической конференции "посвященной к 100 летую Академика Х.Х.Усмонхужаева .ТИТЛП -20-21 ноября , 2019 года, ТОМ.1. 86-88 стр.